Efficient Multicore Sparse Matrix-Vector Multiplication for Finite Element Electromagnetics on the Cell-BE processor

نویسندگان

  • David M. Fernández
  • Dennis Giannacopoulos
  • Warren J. Gross
چکیده

Multicore systems are rapidly becoming a dominant industry trend for accelerating electromagnetics computations, driving researchers to address parallel programming paradigms early in application development. We present a new sparse representation and a two level partitioning scheme for efficient sparse matrix-vector multiplication on multicore systems, and show results for a set of finite element matrices that demonstrate its potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a complete FEM-based simulation toolkit on GPUs: Unstructured Grid Finite Element Geometric Multigrid solvers with strong smoothers based on Sparse Approximate Inverses

We describe our FE-gMG solver, a finite element geometric multigrid approach for problems relying on unstructured grids. We augment our GPUand multicore-oriented implementation technique based on cascades of sparse matrix-vector multiplication by applying strong smoothers. In particular, we employ Sparse Approximate Inverse (SPAI) and Stabilised Approximate Inverse (SAINV) techniques. We focus ...

متن کامل

Towards a fast parallel sparse matrix-vector multiplication

The sparse matrix-vector product is an important computational kernel that runs ineffectively on many computers with super-scalar RISC processors. In this paper we analyse the performance of the sparse matrix-vector product with symmetric matrices originating from the FEM and describe techniques that lead to a fast implementation. It is shown how these optimisations can be incorporated into an ...

متن کامل

Run-Time Optimization of Sparse Matrix-Vector Multiplication on SIMD Machines

Sparse matrix-vector multiplication forms the heart of iterative linear solvers used widely in scientific computations (e.g., finite element methods). In such solvers, the matrix-vector product is computed repeatedly, often thousands of times, with updated values of the vector until convergence is achieved. In an SIMD architecture, each processor has to fetch the updated off-processor vector el...

متن کامل

Parallel structurally-symmetric sparse matrix-vector products on multi-core processors

We consider the problem of developing an efficient multi-threaded implementation of the matrix-vector multiplication algorithm for sparse matrices with structural symmetry. Matrices are stored using the compressed sparse row-column format (CSRC), designed for profiting from the symmetric non-zero pattern observed in global finite element matrices. Unlike classical compressed storage formats, pe...

متن کامل

Efficient Sparse Matrix-Matrix Multiplication on Multicore Architectures∗

We describe a new parallel sparse matrix-matrix multiplication algorithm in shared memory using a quadtree decomposition. Our preliminary implementation is nearly as fast as the best sequential method on one core, and scales well to multiple cores.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009